01 Μαρ Το ταξίδι των αριθμών ανάμεσα στους αιώνες | Μέρος Γ’
Το πρόβλημα του Πυθαγόρα, οι Αρρητοι και η συμπλήρωση του συνόλου των Πραγματικών Αριθμών
Ο συνδυασμός αυτών των τριών συνόλων ήταν ικανός να λύσει σχεδόν κάθε μαθηματικό πρόβλημα που προέκυπτε. Ωστόσο, υπήρχαν ακόμα άλυτα ερωτήματα τα οποία δεν μπορούσαν να αντιμετωπιστούν ούτε από αυτό το τεράστιο σύνολο αριθμών. Γνωστότερο όλων ήταν το Πυθαγόρειο πρόβλημα το οποίο αποδείκνυε την αρρητότητα της τετραγωνικής ρίζας του 2. Η υποτείνουσα ενός τριγώνου με πλευρές ίσες με 1 δεν ήταν δυνατό να υπολογιστεί. Ο Πυθαγόρας δεν μπορούσε να διαψεύσει την ύπαρξή των αρρήτων μέσα από τη λογική, αλλά δεν μπορούσε και να δεχθεί την ύπαρξή τους. Το πρόβλημα παρέμεινε άλυτο και έπρεπε να περάσουν πάνω από δύο χιλιετίες ώστε οι Αρρητοι Αριθμοί να αναγνωρισθούν, από μια σειρά πρωτοπόρων μαθηματικών τον 19ο αιώνα.
Οι θεωρίες μαθηματικών όπως ο Βάιστρας, ο Ντέντεκιντ και ο Καντόρ ήταν πλέον ικανές να αποδείξουν την ύπαρξη των Αρρητων. Με αυτό το τρόπο δημιουργήθηκε το ολοκληρωμένο σύνολο των Πραγματικών Αριθμών, στο οποίο ανήκουν όλοι οι αριθμοί. Φτάνοντας σε αυτό το σύνολο, οι μαθηματικοί θεώρησαν πως δημιούργησαν το απόλυτο εργαλείο για τις μελέτες τους. Ενα σύνολο αριθμών από το οποίο δεν έλειπε απολύτως τίποτα. Εκαναν για ακόμα μια φορά όμως ένα μεγάλο λάθος, αφού δεν χρησιμοποίησαν επαρκώς την… φαντασία τους.
Ακολουθεί δ’ μέρος
Μέρος Α’: Το ταξίδι των αριθμών ανάμεσα στους αιώνες | Μέρος Α’
Μέρος Β’: https://www.lecturesbureau.gr/1/2854b/
Πηγή: http://physics4u.gr/blog/
Εικόνα Α: https://gr.pinterest.com/pin/411094272212671301/
Εικόνα Β: https://gr.pinterest.com/pin/262756959501254419/