Τα μαθηματικά,η αισθητική και η ομορφιά των εξισώσεων!!!

Τα μαθηματικά,η αισθητική και η ομορφιά των εξισώσεων!!!

Σύμφωνα με έρευνα που δημοσιεύτηκε στο περιοδικό Frontiers in Human Neuroscience, μία μαθηματική απόδειξη μπορεί να διεγείρει το ίδιο τμήμα του εγκεφάλου με αυτό που επηρεάζει η τέχνη και η ιδέα της ομορφιάς. Τρεις νευρολόγοι από πανεπιστήμια της Βρετανίας χρησιμοποίησαν ένα μαγνητικό τομογράφο με τον οποίο απεικόνισαν την εγκεφαλική δραστηριότητα 15 ανθρώπων που ασχολούνταν επαγγελματικά με τα μαθηματικά. Κατά τη διάρκεια του πειράματος, οι ερευνητές προέβαλαν σε μία οθόνη μαθηματικούς τύπους με τυχαία σειρά, οι οποίοι προηγουμένως είχαν αξιολογηθεί ως όμορφοι, ουδέτεροι ή άσχημοι σε μία κλίμακα από το -5 έως το 5.Τα αποτελέσματα από τις τομογραφίες, δείχνουν παρόμοια εγκεφαλική δραστηριότητα με αυτή που προκαλείται από την εμπειρία της ομορφιάς μέσω της τέχνης, όπως αυτή που προκαλεί ένας πίνακας ζωγραφικής ή η ακρόαση μουσικής.

 

Ο Σεμίρ Ζέκι,καθηγητής Νευροβιολογίας του πανεπιστημίου UCL στην Αγγλία, δήλωσε: «Αυτό που το κάνει ενδιαφέρον, είναι πως μαθαίνουμε πως η εμπειρία της ομορφιάς σε κάτι τόσο αφηρημένο όπως τα μαθηματικά συσχετίζεται με τη δράση που έχουν στο ίδιο τμήμα του εγκεφάλου αισθητήρια που έχουν να κάνουν με συναισθήματα και αντιλήψεις», «Η ομορφιά ενός μαθηματικού τύπου ίσως να είναι αποτέλεσμα της απλότητας, της συμμετρίας και της κομψότητας στη διατύπωση μιας οικουμενικής αλήθειας. Για τον Πλάτωνα, τα μαθηματικά αποτελούσαν ύψιστη κορύφωση της ομορφιάς». Οι παροικούντες στην μαθηματική Ιερουσαλήμ δεν χρειάζονταν μια τέτοια έρευνα. Ήξεραν.  Ο μαθηματικός John H.Conway έλεγε:  “Είναι κάτι που οι μαθηματικοί μπορούν να αντιληφθούν πλήρως.Τα μαθηματικά στην πραγματικότητα είναι σχεδόν εξ ολοκλήρου ζήτημα αισθητικής!!”Ο Βρετανός μαθηματικός G.H.Hardy έγραφε στην περίφημη απολογία του:
“Η ομορφιά είναι το πρώτο κριτήριο: δεν υπάρχει μόνιμη θέση σ’ αυτόν τον κόσμο για τα άσχημα μαθηματικά.”   Ένας άλλος Βρετανός μαθηματικός George Boole υπερθεμάτιζε: “Δεν έχει σημασία σε ποιο βαθμό ένα μαθηματικό θεώρημα φαίνεται σωστό ,πιθανότατα είναι ατελές αν δεν δίνει την εντύπωση ότι είναι και όμορφο.” . Ενώ, ο Richard Feynman συμπλήρωνε: “Αυτοί που δεν γνωρίζουν μαθηματικά είναι δύσκολο να νιώσουν μια πραγματική συγκίνηση για την ομορφιά, την βαθύτερη ομορφιά της φύσης …Εάν θέλετε να μάθετε για την φύση, να εκτιμήσετε την φύση, είναι απαραίτητο να κατανοήσετε την γλώσσα που μιλάει. ”
Την σκυτάλη παραλαμβάνει ο Γαλιλαίος στον «Αναλυτή» του, το 1623:
«Η φιλοσοφία είναι γραμμένη σ’ αυτό το μεγάλο βιβλίο. Εννοώ το σύμπαν, το οποίο είναι συνεχώς μπροστά μας  ανοιχτό. Αλλά κάνεις δεν μπορεί να το κατανοήσει , αν δεν μάθει  πρώτα να καταλαβαίνει την γλώσσα και  να ερμηνεύει το αλφάβητο με το οποίο είναι γραμμένο. Είναι γραμμένο στην γλώσσα των μαθηματικών και το αλφάβητο του είναι τα τρίγωνα, οι κύκλοι και τα αλλά γεωμετρικά σχήματα, που χωρίς αυτά δεν μπορεί  διαβάσει ούτε μια λέξη, χωρίς αυτά είναι σαν περιφέρεται  κανείς σε ένα σκοτεινό λαβύρινθο.»
Το δημοσίευμα,κατατάσσει στην κλίμακα ομορφιάς στην υψηλότερη θέση την ταυτότητα του Euler 1 + eiπ = 0, η οποία παρά την απλότητά της εμπλέκει τις σημαντικότερες πέντε μαθηματικές σταθερές μέσω των τριών βασικών αριθμητικών πράξεων ή το θεώρημα του Πυθαγόρα και τις σχέσεις Cauchy-Riemann στη μιγαδική ανάλυση.Στο ίδιο άρθρο, ως η πιο άσχημη εξίσωση αναφέρεται το ανάπτυγμα του μεγαλυτέρου Ινδού Srinivasa Ramanujan  του 1/π ως το άθροισμα μίας άπειρης σειράς όρων που ανακάλυψε το 1910.
Αντίστροφα, τα μαθηματικά και η αισθητική είναι απολύτως δεμένα με τον μαθηματικό τύπο του George Birkhoff .Άλλωστε δεν είναι τυχαίο που ακόμα και εικαστικοί καλλιτέχνες χρησιμοποιούν τον μαθηματικό συμβολισμό των εξισώσεων  ως πρότυπο αισθητικής απόλαυσης και τελειότητας .
Για παράδειγμα, ο Αυστραλός φωτογράφος Τζάστιν Μάλινς,τo 2010 έκανε μια  πρωτότυπη έκθεση φωτογραφιών των πιο σημαντικών εξισώσεων.
“Εγώ δεν είμαι μαθηματικός” γράφει ο Μάλινς .Για μένα, οι διανοητές που συνέταξαν τις εξισώσεις μοιάζουν με τους μεγάλους εξερευνητές που επιστρέφουν από μακρινές παραλίες και μιλούν για φανταστικούς τόπους και μαγικά πλάσματα.”
Ο Αυστραλός καλλιτέχνης ανέλαβε λοιπόν να αφηγηθεί αυτές τις εξισώσεις, να τις απομυθοποιήσει, να τις φωτογραφίσει, να τις χωρίσει σε κατηγορίες και να τις δείξει στο ευρύ κοινό. Τον τίτλο της πιο όμορφης εξίσωσης  θεωρεί και αυτός ότι δικαιούται η ταυτότητα  του Όιλερ. Για τον Μάλινς, το θεώρημα αυτό είναι σαν το Γκραν Κάνιον, το Έβερεστ και τους Καταρράκτες του Νιαγάρα μαζί: το τι βλέπεις εξαρτάται από τη γωνία υπό την οποία το κοιτάς.

 

 

 

Μαθη-μαγικά         

Εικόνα: http://discovermagazine.com/~/media/Images/Issues/2014/April/Math%20art%20gallery/math-cover.jpg?mw=738



Facebook

Instagram

Follow Me on Instagram
  • And those who were seen dancing were thought to be insane by THOSE WHO COULD NOT HEAR THE MUSIC ...

    lecturesbureau: "And those who were seen dancing
were thought to be insane
by THOSE WHO COULD NOT HEAR THE MUSIC ..."
    347
    0
  • Life is so unpredictable that anything is possible .

    lecturesbureau: "Life is so unpredictable that anything is possible ."
    266
    0
  • I LIVE IN MY DREAMS . Other people live in dreams , but not in their own . That's the difference .

    lecturesbureau: "I LIVE IN MY DREAMS .
Other people live in dreams , but not in their own .
That's the difference ."
    349
    2
  • All my life I've looked at words as though I were seeing them for the first time .

    lecturesbureau: "All my life I've looked at words
as though I were seeing them for the first time ."
    257
    0
  • Medicine heals deseases of the body wisdom frees the soul from passions .

    lecturesbureau: "Medicine heals deseases of the body
wisdom frees the soul from passions ."
    493
    1
  • It does not matter how slowly you go so long as you do not stop .

    lecturesbureau: "It does not matter how slowly you go 
so long as you do not stop ."
    352
    2
  • A book read by a thousand different people is a thousand different books .

    lecturesbureau: "A book read by a thousand different people
is a thousand different books ."
    611
    0
  • Our chief want is someone who will inspire us to be WHAT WE KNOW WE COULD BE .

    lecturesbureau: "Our chief want is someone who will inspire us
to be WHAT WE KNOW WE COULD BE ."
    269
    2
  • The bee discovers amid the most pungent flowers and the roughest thorns the smoothest and most palatable honey .

    lecturesbureau: "The bee discovers amid the most pungent flowers
and the roughest thorns
the smoothest and most palatable honey ."
    108
    0
  • Without joy in our heart , our progress in life is slow and uninteresting .

    lecturesbureau: "Without joy in our heart ,
our progress in life 
is slow and uninteresting ."
    220
    0